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Adding and multiplying random matrices: A generalization of Voiculescu’s formulas

P. Zinn-Justin*

New High Energy Theory Center, 126 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
~Received 28 October 1998!

In this paper, we give an elementary proof of the additivity of the functional inverses of the resolvents of
large N random matrices, using recently developed matrix model techniques. This proof also gives a very
natural generalization of these formulas to the case of measures with an external field. A similar approach
yields a relation of the same type for multiplication of random matrices.@S1063-651X~99!02305-3#

PACS number~s!: 05.40.2a, 02.50.2r
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I. INTRODUCTION

In the theory of free random variables@1#, a remarkable
additivity property of the functional inverses of the spect
resolvents is found, allowing the addition of random va
ables. There is also a similar formula for multiplication
random variables. From now on, we shall call the
Voiculescu’s formulas. These mathematical results h
some interesting applications: indeed, it turns out that la
size ~independent! random matrices with certain measur
are free variables. Therefore it becomes possible to com
the resolvent of the sum of two random matrices from
knowledge of the resolvent of the separate matrices, i.e
add ~and multiply! large random matrices. This, in turn, a
plies to various physical situations: ‘‘determinist
1random’’ problem@2,3# ~noting that for Gaussian random
ness, the addition formula essentially reduces to Past
equation@4#!, random matrix methods applied to QCD@5#,
non-Hermitean random matrices@6#, and the Anderson
model@7#. Since in the ‘‘planar’’ largeN limit ~N size of the
matrices! that we consider here one cannot computen-point
connected correlations of the eigenvalues or otherN→`
subdominant corrections, alternative methods~such as the
supersymmetric method, see review@8# and references
therein! may be required for a more detailed analysis; but
many problems, it is still very important to be able to com
pute the density of eigenvalues~one-point function!, which
Voiculescu’s formulas provide.

It is therefore of great interest to find an elementary pr
of these formulas. We shall mention one such proof by Z
@3# of the addition formula, which is based on a perturbat
approach: the measures of two random Hermitean matr
M1 andM2 are assumed to be derived from an action of
form trV(M ), whereV is a polynomial, and the perturbativ
expansion is represented diagrammatically, leading to a
grammatic proof of Voiculescu’s formula.

However, this proof has limitations. First it assumesU(N)
invariance of the actions. Of course one might object tha
we assume both measures to be non-U(N)-invariant, then
Voiculescu’s formula is not true any more~there is an obvi-
ous counterexample, which is the case of two fixed ma
ces!. And if one measure isU(N)-invariant and the other is
not, one can freely replace the noninvariant measuredm(M)
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with an invariant one by averaging on the unitary group:

dmeff~M !5E
VPU~N!

dV dm~VMV†!.

This replacement will not affect the resolvent of the sum
M and of another random matrix withU(N)-invariant mea-
sure; however, it is not completely innocent since even if
original measuredm(M) was derived from a simple polyno
mial action, there is no reason fordmeff(M ) to possess the
same property.

We see that the problem is that this proof does not all
for general enough measures; in particular, a very interes
physical application is the case of a fixed matrix~for the
deterministic1random problem!, where the corresponding
measure is highly singular~d function! and does not fit in
this perturbative framework.

We propose in this paper a proof of both addition a
multiplication formulas, which makes very few assumptio
on the measures; it is based on recently developed ma
model techniques@9# which have been successfully applie
to physical models@10#. In Sec. II, we shall show how to ad
matrices by introducing an external field in the measure~as
in Ref. @9#!, and in Sec. III, we shall multiply matrices b
adding this time a character in the measure~as in Ref.@10#!.
The proof has the obvious advantage that it generalizes
usual addition formula to the case of a measure with an
ternal field~and similarly, the multiplication formula to the
case of a measure with a character insertion!. Section IV is
devoted to a summary of the results and conclusions.

II. ADDING RANDOM MATRICES

Before addressing the problem of the addition of seve
matrices, we shall explain our approach by considerin
single N3N Hermitean matrixM with a U(N)-invariant
measuredm(M). The only assumption we make about th
measure is that the diagonalization ofM leads to a saddle
point for the eigenvalues ofM; that is, after integrating ou
the angular degrees of freedom, the dominant largeN contri-
bution is obtained by simply considering the eigenvalues
be fixed~up to a permutation of the eigenvalues!. This is a
reasonable assumption, since asN→`,there are onlyN ei-
genvalues, as opposed to theN2 degrees of freedom of the
full matrix. For example, a typical measure that is encou
tered in physical problems is
4884 ©1999 The American Physical Society
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PRE 59 4885ADDING AND MULTIPLYING RANDOM MATRICES: A . . .
dm~M !5)
i

dMii)
i , j

d ReMi j d Im Mi j exp„2S~M !…,

~2.1!

where S(M) is the action, which is invariant—S(M )
5S(VMV†) for all VPU(N)—and scales likesN2 as N
→`, which ensures a saddle point for the eigenvalues@for
example,S(M)can be of the formS(M )5N tr V(M ), where
V is a given polynomial, but more general actions with pro
ucts of traces are possible#. However, the actiondm(M) does
not have to be of the form~2.1!, and in particular can be
more singular@for example, for a fixed matrix, after averag
ing over the unitary groupU(N), the measure is ad function
for the eigenvalues#.

We now introduce the partition function with an add
tional external fieldA ~see Refs.@11#, @12#, and @9# for the
appearance of such an external field in physical models!:

Z~A!5E dm~M !exp~N tr MA!, ~2.2!

whereA is a fixed Hermitean matrix. WhenN→`, one must
consider a sequence ofN3N matricesA such that their spec
tral density tends to a continuous densityrA(a) on the real
axis. Since the measure isU(N)-invariant,Z(A) depends only
on the eigenvalues ofA, and for definiteness we shall choo
A to be diagonal, with eigenvaluesaj , j 51, . . . ,N.

We can go over to the eigenvaluesl i of M by using the
Itzykson-Zuber-Harish Chandra formula@13#:

Z@aj #5E dm@l i #
det@exp~Nl iaj !#

D@l i #D@aj #
, ~2.3!

whereD@ # is the Van der Monde determinant, anddm@l i #
is the resulting measure on the eigenvalues; for exam
with a measure of the type~2.1!, we have

Z@aj #5E )
i

dl iexp~2S@l i # !D@l i #
det@exp~Nl iaj !#

D@aj #
,

~2.4!

where we have used the fact that the actionS only depends
on the eigenvaluesl i of M.

Finally we introduce the logarithmic derivative ofZ with
respect to the eigenvaluesaj . According to Eq.~2.2!, it is
simply expressed as an average,

1

N

]

]aj

ln Z@aj #5^M j j &A ,

where the subscriptA indicates that the average is made
the presence of the external field, i.e., with the meas
dm(M )exp(N tr MA). A more useful expression for thi
logarithmic derivative is found by applying Eq.~2.3!:

1

N

]

]aj

ln Z@aj #5
1

N K ]

]aj

ln
det@exp~Nl iaj !#

D@aj #
L

A

. ~2.5!

The kind of derivative that appears in Eq.~2.5! has been
studied in Ref.@9#; we shall briefly review the results w
-

le,

re

need, and refer the reader to the appendix 1 of Ref.@9# for
the technical details. In the largeN limit, the spectral density
of A tends by definition to the continuous densityrA , and
similarly, since there is a saddle point for the eigenvalues
M, we assume that the spectral densityrM of M becomes
also continuous. Then, the derivative with respect toaj @Eq.
~2.5!# becomes an analytic functionf (aj ) of its argumentaj ,
of the form

f ~a!5l~a!2vA~a!. ~2.6!

Let us define the two functions in Eq.~2.6!. vA(a) is the
resolvent ofA:

vA~a!5
1

N
tr

1

a2A
5E da8rA~a8!

a2a8
.

It is an analytic function ofa except for a cut on the suppo
of A ~which is contained in the real axis!. If we introduce the
notation v” A(a)5 1

2 @vA(a1 i0)1vA(a2 i0)# for a real, so
that vA(a6 i0)5v” A(a)7 iprA(a), then

v” A~aj !5
1

N

]

]aj

ln D@aj #. ~2.7!

Similarly, l(a) is defined by the following requirements
it has the same cut asvA(a) on the support ofrA , and it
satisfies

l”~aj !5
1

NK ]

]aj

ln det@exp~l iaj !#L
A

. ~2.8!

Of course,l(a) may have more cuts thenvA(a), whose
positions are left undefined; so one should really think
l(a) as a multivalued function, living on a branched coveri
of the complex plane.

Note that combining Eqs.~2.7! and ~2.8! and using the
fact thatvA(a) and l(a) have the same cut, one finds th
expression~2.6! for the logarithmic derivative~2.5!.

It is now possible to connect the functionl(a) with the
resolventvM(l) of M:

vM~l!5 K 1

N
tr

1

l2M L
A

5E dl8rM~l8!

l2l8
.

Indeed, it was shown in Ref.@9# ~see also the earlier work
@14#! that if one introduces in a symmetric way the functio
a(l) with the same cut asvM(l) and such that

a” ~l i !5
1

NK ]

]l i

ln det@exp~Nl iaj !#L
A

,

then a(l) and l(a) are functional inverses of each other
multivalued analytic functions.

Let us now take the limitA→0 @note that if one directly
takesA50, expressions such as Eqs.~2.7! and~2.8! become
meaningless; so one must consider a limit where the sup
of rA has a finite size but becomes smaller and small#,
which is rA(a)→d(a) or still vA(a)→1/a. In this limit,
from the Itzykson–Zuber–Harish Chandra formula, one
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4886 PRE 59P. ZINN-JUSTIN
fers that det@exp(Nl iaj )#/D@aj #;D@l i #, so thata(l) tends
to the resolventvM(l). Therefore, forA50, l(a) is pre-
cisely the functional inverse of the resolvent we were loo
ing for.

It is now clear that the obvious factorization property

exp„N tr~M11M2!A…5exp~N tr M1A!exp~N tr M2A!

implies the additivity of the average of its logarithmic d
rivative:

^~M11M2! j j &A5^M1; j j &A1^M2; j j &A .

On condition that the two matricesM1 andM2 are indepen-
dent, this can be rewritten as the additivity of the functio

l~a!2vA~a!

or for the particular caseA50:

l~a!2
1

a
.

This is the essence of Voiculescu’s formula for adding r
dom matrices.

Let us see how this works more explicitly, by consideri
two independent random matricesM1 andM2 with measures
dm1(M1) anddm2(M2). We shall assume both measures
beU(N)-invariant, even though, as explained in the Introdu
tion, it is not more difficult to prove the formula with onl
one U(N)-invariant measure and a noninvariant one. Bo
measures are such that there exists a saddle point fo
eigenvalues ofM1 andM2 .

Then one introduces the partition function with an ext
nal field:

Z~A!5E E dm1~M1!dm2~M2!exp„N tr~M11M2!A….

~2.9!

Again, due toU(N) invariance of both measures,Z(A) de-
pends only on the eigenvaluesaj of A. Therefore we can
write that

Z@aj #5E
VPU~N!

dV Z~VAV†!, ~2.10!

where we use the normalized Haar measure onU(N). By
performing explicitly the integration overV ~once more, the
Itzykson–Zuber–Harish Chandra integral!, we immediately
obtain that

Z@aj #5E E dm1~M1!dm2~M2!
det@exp~Nl iaj !#

D@l i #D@aj #
,

where thel i are the eigenvalues ofM11M2 . We can now
introduce the usual logarithmic derivative with respect
aj ,which is of the form

1

N

]

]aj

ln Z@aj #5
1

N K ]

]aj

ln
det@exp~Nl iaj !#

D@aj #
L

A

5l~aj !2vA~aj !, ~2.11!
-

-

-

h
he

-

wherel(a) is connected with the matrixM11M2 ; in par-
ticular, for A50, it is the functional inverse of the resolven
vM11M2

(l).

On the other hand, one can diagonalize separatelyM1 and
M2 , since the partition function completely factorizes
Z(A)5Z1(A)Z2(A), with obvious notations. One finds

Z@aj #5E E dm1~M1!dm2~M2!
det@exp~Nl1;iaj !#

D@l1;i #D@aj #

3
det@exp~Nl2;iaj !#

D@l2;i #D@aj #
.

Therefore,

1

N

]

]aj

ln Z@aj #5@l1~aj !2vA~aj !#1@l2~aj !2vA~aj !#.

~2.12!

Combining Eqs.~2.11! and ~2.12!, we find that the rela-
tion

l1~a!1l2~a!5l~a!1vA~a! ~2.13!

is valid on the support of the density ofrA(a), and by ana-
lytic continuation is therefore valid on the whole comple
plane.

For A50, the functionsl(a),l1(a),l2(a) are functional
inverses of the corresponding resolvents, andvA(a)51/a,
so that Eq.~2.13! reduces to Voiculescu’s formula for addin
free variables. However, the relation~2.13! still holds for
arbitrary A, thus generalizing Voiculescu’s formula in
highly nontrivial way.

Remarks

~i! If we assume that only one measure@e.g.,dm1(M1)] is
U(N)-invariant, thenZ(A) no longer depends only on the e
genvalues ofA; but we can take Eq.~2.10! as a definition of
Z@aj #, and then the rest of the proof works identically~ex-
cept that instead of diagonalizingM2 , one integrates ove
V!.

~ii ! In theA50 case, the connection to the usual diagra
matic interpretation is the following. One can show that f
A50, our definition of f (a)5l(a)21/a is equivalent to
f (a)[(1/N)(d/da)ln^exp(NaM11)&, whereM11 is an arbi-
trarily chosen diagonal element.^exp(NaM11)& being a gen-
erating function of the moments ofM11, its logarithm gen-
erates the connected moments: ln^exp(NaM11)&
5(n50

` (Nn/n!)an^M11
n &c . Furthermore, usingU(N) invari-

ance of the measure and bothplanarity andconnectednessof
the diagrams that appear in the perturbative expansion,
has the following largeN equality:

^M11
n &c ;

N→`~n21!!

Nn
^tr Mn&c .

Therefore one finds the usual expansionf (a)
5(n50

` an(1/N)^tr Mn11&c .
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III. MULTIPLYING RANDOM MATRICES

The same type of argument applies to the multiplicat
of random matrices. Let us start again with a single H
mitean random matrix with a measuredm(M) which leads to
a saddle point on the eigenvalues. We define the parti
function with a character:

Z@H#5
1

dimHE dm~M !xH~M !. ~3.1!

Here H is a ~holomorphic! irreducible representation o
GL(N); it can be parametrized in the following way:H
5$hj ; j 51, . . . ,N%, where thehj , j 51, . . . ,N, which
form a decreasing sequence of integers, are theshifted high-
est weightsof H ~the shifted highest weightshj are con-
nected with the usual highest weightsmj by the formulahj
5N2 j 1mj ). xH(M ) is the character ofH taken atM. Us-
ing Weyl’s formula for the characterxH(M )and the fact that
dimH5cstD@hj #, we can rewriteZ[H] in terms of thehj :

Z@hj #5E dm~M !
det@l i

hj #

D@l i #D@hj #
. ~3.2!

This expression is very similar to Eq.~2.3! obtained after use
of the Itzykson–Zuber–Harish Chandra formula. It is no
clear that the same formalism will apply~see appendix 2 o
Refs.@9# and @10# for more details!.

In the largeN limit, we assume that thehj /N ~note the
important rescaling of a factor ofN! tend to a continuous
densityrH(h). We can then consider thehj /N as continuous
real variables, and introduce the logarithmic derivatives

]

]hj

ln Z@hj #5K ]

]hj

ln
det@l i

hj #

D@hj #
L

H

~3.3!

„]/]hj stands for (1/N)@]/](hj /N)#….
We are now led to the introduction of two functions: th

resolventvH(h),

vH~h!5E dh8rH~h8!

h2h8
,

and the functionL(h) which has the same cut asvH(h) and
whose mean value on it is

L” ~hj /N!5K ]

]hj

ln det@l i
hj #L

H

.

We finally definel(h)5expL(h).
The eigenvalues also have a saddle point densityrM(l),

with its associated resolventvM(l), and there is a function
h(l) which satisfies

h” ~l i !5
1

NK l i

]

]l i

ln det@l i
hj #L

H

and which has the same cut aslvM(l). h(l) andl(h) are of
course functional inverses of each other. Note that we w
forced to introduce an extra factor ofl in the definition of
n
-

n

re

h(l), which is the crucial difference from the preceding se
tion. Indeed, let us now chooseH to be the trivial represen
tation, so thathi5N2 i , that is,

vH~h!5 ln
h

h21
.

Then det@l i
hj #5D@l i # and thereforeh(l)5lvM(l): l(h) is

now the functional inverse ofl times the resolvent, and no
of the resolvent itself, which is something completely diffe
ent.

Let us now write down a formula for multiplying two
matricesM1 and M2 , with associated measuresdm1(M1)
and dm2(M2). As before, at least one of the two measur
must beU(N)-invariant. We introduce the partition functio
with a character

Z~H !5E E dm1~M1!dm2~M2!
xH~M1M2!

dimH
. ~3.4!

Direct application of the previous formalism to the produ
M1M2 leads to

]

]hj

ln Z@hj #5 ln l~hj /N!2vH~hj /N!, ~3.5!

wherel(h) is associated to the productM1M2 .
On the other hand, since one of the two measures isU(N)-

invariant, we can write that

Z@hj #5
1

dimHE
VPU~N!

3dVE E dm1~M1!dm2~M2!xH~VM1V†M2!.

Using orthogonality relations for matrix elements of irredu
ible representations, we can integrate overV:

Z@hj #5E E dm1~M1!dm2~M2!
xH~M1!

dimH

xH~M2!

dimH
.

The logarithmic derivative can now be written as

]

]hj

ln Z@hj #5@ ln l1~hj /N!2vH~hj /N!#

1@ ln l2~hj /N!2vH~hj /N!#, ~3.6!

wherel1(h) and l2(h) are the functions associated in th
usual way to the matricesM1 andM2 .

Comparing Eqs.~3.5! and ~3.6! and exponentiating the
resulting formula, as is more appropriate for multiplying m
trices, we find

l1~h!l2~h!5l~h!exp„vH~h!…, ~3.7!

which is the multiplicativity of the function
l(h)exp„2vH(h)….
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If we now restrict ourselves to the case of the trivial re
resentation,l(h),l1(h),l2(h) are functional inverses ofl
times the corresponding resolvents, andvH(h)5 ln„h/(h
21)…, so that

l1~h!l2~h!5l~h!
h

h21
. ~3.8!

Note once more that the functionsl(a) in Eq. ~2.13! and
the functionsl(h) in Eq. ~3.7! are not directly related to eac
other since they are expressed in terms of different variab

IV. CONCLUSION

We have proven two main formulas: Eq.~2.13! for the
addition of random matrices, and Eq.~3.7! for their multipli-
cation. As far as the author knows, the second formula, e
in its usual form@Eq. ~3.8!#, does not have a simple diagram
matic proof.

The proofs used above have the advantage that
clearly highlight the key hypothesis needed for the results
hold: ~i! U(N) invariance of~at least one of! the two mea-
sures, and~ii ! an analyticity property of the resolvents. L
us discuss these two points.

The U(N) invariance of the measure is an essential ing
dient of the proof: without it one cannot integrate over t
unitary group to use the Itzykson–Zuber–Harish Chan
nd

l.
-

s.

n

ey
o

-

a

formula for the orthogonality formula for characters. This
completely consistent with the assertion found in the ma
ematical literature@15,16# that the two matrices should b
independentlyU(N)-rotated with respect to each other in o
der to ensure freeness. As has already been mentioned
hypothesis is obviously necessary~as the case of two fixed
matrices shows!; but let us also note that when one keeps
external fieldA nonzero~or the representationH nontrivial!,
then one obtains addition/multiplication formulas which a
different from Voiculescu’s formulas~and, generically, in-
compatible with them!; so that for these measures@which of
course also breakU(N) invariance#, the random matrices ar
no longer free variables, but still satisfy additio
multiplication formulas.

The analyticity property of the resolvents stems from t
fact that we have assumed the matrices to be Hermite
which prevents the eigenvalues from moving freely in t
complex plane, and creating dense regions where the re
vent is no longer analytic. However, the proof does not rea
make use of the Hermiticity of the matrices, and the gen
alization to non-Hermitean matrices might provide some u
ful insight into these more complicated matrix models.
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