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Adding and multiplying random matrices: A generalization of Voiculescu’s formulas
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In this paper, we give an elementary proof of the additivity of the functional inverses of the resolvents of
large N random matrices, using recently developed matrix model techniques. This proof also gives a very
natural generalization of these formulas to the case of measures with an external field. A similar approach
yields a relation of the same type for multiplication of random matrif®$063-651X99)02305-3

PACS numbd(s): 05.40—a, 02.50-r

I. INTRODUCTION with an invariant one by averaging on the unitary group:

In the theory of free random variablé$], a remarkable B
additivity property of the functional inverses of the spectral dpe(M)= fﬂeu(
resolvents is found, allowing the addition of random vari-
ables. There is also a similar formula for multiplication of This replacement will not affect the resolvent of the sum of
random variables. From now on, we shall call themM and of another random matrix witd(N)-invariant mea-
Voiculescu's formulas. These mathematical results haveure; however, it is not completely innocent since even if the
some interesting applications: indeed, it turns out that largeriginal measurew(M) was derived from a simple polyno-
size (independentrandom matrices with certain measuresmial action, there is no reason fdu.z(M) to possess the
are free variables. Therefore it becomes possible to computsame property.
the resolvent of the sum of two random matrices from the We see that the problem is that this proof does not allow
knowledge of the resolvent of the separate matrices, i.e., tfor general enough measures; in particular, a very interesting
add (and multiply large random matrices. This, in turn, ap- physical application is the case of a fixed mat(fgr the
plies to various physical situations: “deterministic deterministie-random probler; where the corresponding
+random” problem[2,3] (noting that for Gaussian random- measure is highly singulais function) and does not fit in
ness, the addition formula essentially reduces to Pastur'this perturbative framework.
equation[4]), random matrix methods applied to Q{b], We propose in this paper a proof of both addition and
non-Hermitean random matrice6], and the Anderson multiplication formulas, which makes very few assumptions
model[7]. Since in the “planar” largeN limit (N size of the  on the measures; it is based on recently developed matrix
matriceg that we consider here one cannot compugoint  model technique§9] which have been successfully applied
connected correlations of the eigenvalues or otNesr~  to physical model§10]. In Sec. Il, we shall show how to add
subdominant corrections, alternative methddach as the matrices by introducing an external field in the meadae
supersymmetric method, see reviel8] and references in Ref.[9]), and in Sec. lll, we shall multiply matrices by
therein may be required for a more detailed analysis; but foradding this time a character in the meas{a® in Ref[10]).
many problems, it is still very important to be able to com-The proof has the obvious advantage that it generalizes the
pute the density of eigenvaluésne-point functiofy, which  usual addition formula to the case of a measure with an ex-
Voiculescu’s formulas provide. ternal field (and similarly, the multiplication formula to the

It is therefore of great interest to find an elementary proofcase of a measure with a character insejti@ection IV is
of these formulas. We shall mention one such proof by Zeelevoted to a summary of the results and conclusions.

[3] of the addition formula, which is based on a perturbative

approach: the measures of two random Hermitean matrices II. ADDING RANDOM MATRICES

M, andM, are assumed to be derived from an action of the

form trV(M), whereV is a polynomial, and the perturbative = Before addressing the problem of the addition of several
expansion is represented diagrammatically, leading to a dianatrices, we shall explain our approach by considering a
grammatic proof of Voiculescu’'s formula. single NXN Hermitean matrixM with a U(N)-invariant

However, this proof has limitations. First it assunté$N) measuredu(M). The only assumption we make about this
invariance of the actions. Of course one might object that ifmeasure is that the diagonalization Mf leads to a saddle
we assume both measures to be hi{h)-invariant, then point for the eigenvalues d¥l; that is, after integrating out
Voiculescu’s formula is not true any mofthere is an obvi- the angular degrees of freedom, the dominant [&tgentri-
ous counterexample, which is the case of two fixed matribution is obtained by simply considering the eigenvalues to
ces. And if one measure i§J(N)-invariant and the other is be fixed(up to a permutation of the eigenvalyeshis is a
not, one can freely replace the noninvariant measiw@!)  reasonable assumption, sinceMNs>,there are onlyN ei-

genvalues, as opposed to tNé degrees of freedom of the
full matrix. For example, a typical measure that is encoun-
*Electronic address: pzinn@physics.rutgers.edu tered in physical problems is

dQ du(QMQT).
N)
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need, and refer the reader to the appendix 1 of F&ffor
du(M)=TT dM;[] d ReM;;d Im M;;exp(—S(M)), the technical details. In the largélimit, the spectral density
i i<j - . .
of A tends by definition to the continuous densjty, and
2.1 L . . . ;
similarly, since there is a saddle point for the eigenvalues of
where S(M) is the action, which is invariant—S(M) M, we assume that the spectral dengiy of M becomes
=5(QMQ™ for all Q eU(N)—and scales likeN® as N also continuous. Then, the derivative with respecatdEq.
— o, which ensures a saddle point for the eigenvalies (2.95] becomes an analytic functidifa;) of its argumenty;,
example,S(M)can be of the forn8(M) =N trV(M), where  of the form
Vis a given polynomial, but more general actions with prod-
ucts of traces are possibléHdowever, the actiodw(M) does
not have to be of the forni2.1), and in particular can be | ot ;5 define the two functions in E€2.6). wa(a) is the
more singulaffor example, for a fixed matrix, after averag- resolvent ofA:
ing over the unitary group)(N), the measure is & function '
for the eigenvaluds 1 1 —f da’pa(a’)
A - .

We now introduce the partition function with an addi- wA(a)zﬁtra_

f(a)=A(a)—wa(a). (2.6

tional external fieldA (see Refs[11], [12], and[9] for the a—a'

appearance of such an extemal field in physical models It is an analytic function of except for a cut on the support

of A (which is contained in the real ayidf we introduce the

Z(A)=j du(M)exp(N tr MA), (2.2 notation dx(a) =3[ wa(a+i0)+ wa(a—i0)] for a real, so
that wa(axi0)=da(a) Fimpa(a), then

whereA is a fixed Hermitean matrix. Wheld—oo, one must

consider a sequence Nf<X N matricesA such that their spec-

tral density tends to a continuous density(a) on the real

axis. Since the measurelXN)-invariant,Z(A) depends only

on the eigenvalues &, and for definiteness we shall choose  Similarly, A(a) is defined by the following requirements:

A to be diagonal, with eigenvalueg, j=1, ... N. it has the same cut as,(a) on the support op,, and it

We can go over to the eigenvaluksof M by using the satisfies
Itzykson-Zuber-Harish Chandra formuyla3]:

baa)—= L naral]. 2.7
J N aaj !

Z[a,]= f R b it P

1/ 0
X(aj)zﬁ<gln de[exp()\iaj)]> . (2.8
A[N]ALa] §

J

_ ) Of course,\(a) may have more cuts thewm(a), whose
whereA[ ] is the Van der Monde determinant, ad@[Ai]  positions are left undefined; so one should really think of
is the resulting measure on the eigenvalues; for exampléy(a) as a multivalued function, living on a branched covering

with a measure of the typ@.1), we have of the complex plane.
Note that combining Eqg9.2.7) and (2.8) and using the
Z[a~]=f I d)\Aexr(—S[)\-])A[)\-]de(exqm\iaj)] fact thatwa(a) and \(a) have the same cut, one finds the
J i : ! : Alay] ' expression2.6) for the logarithmic derivativeg2.5).
(2.4 It is now possible to connect the functiaa) with the

resolventw,,(\) of M:
where we have used the fact that the act®only depends

on the eigenvalues; of M. 1 1 d\ pu(N")
Finally we introduce the logarithmic derivative gfwith wpm(N)= <Ntr)\— M> = f -,

respect to the eigenvalues. According to Eq.(2.2), it is A .

simply expressed as an average,

Indeed, it was shown in Reff9] (see also the earlier work
[14]) that if one introduces in a symmetric way the function

i iln Z[a]=(M;) a(\) with the same cut ae,;(\) and such that
N o2, i ji’As
1/ 9
where the subscrip indicates that the average is made in a(hj)= N<K|” de{exp(NAiaj)]> ,
the presence of the external field, i.e., with the measure : A

du(M)exp(N trMA). A more useful expression for this

logarithmic derivative is found by applying E@.3): thena(\) and \(a) are functional inverses of each other as

multivalued analytic functions.
Let us now take the limiA— O [note that if one directly
i i|nz[aj]:£<i|nw> . (2.5 takesA=0, expressions such as E¢2.7) and(2.8) become
N 93, N 93, Alg] A meaningless; so one must consider a limit where the support
of pa has a finite size but becomes smaller and smiller
The kind of derivative that appears in E@.5 has been which is pa(a)— 8(a) or still wa(a)—1/a. In this limit,
studied in Ref.[9]; we shall briefly review the results we from the Itzykson—Zuber—Harish Chandra formula, one in-
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fers that detexp(NX\;a;)1/A[a;]1~A[\;], so thata(\) tends
to the resolventwy(\). Therefore, forA=0, A(a) is pre-
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where\(a) is connected with the matriM,+M,; in par-
ticular, for A=0, it is the functional inverse of the resolvent

cisely the functional inverse of the resolvent we were look-ww,+wm,(\).

ing for.
It is now clear that the obvious factorization property

exp(N tr(M;+M,)A)=exp(N tr M;A)exp(N tr M,A)

implies the additivity of the average of its logarithmic de-

rivative:
(M1+M)ipa=(My;jj)at{(Mzjj)a-

On condition that the two matricéd,; andM, are indepen-

On the other hand, one can diagonalize separafglyand

M,, since the partition function completely factorizes as
Z(A)=Z.(A)Z,(A), with obvious notations. One finds

defexp(NA4;a;))]
A[Ny;]1ATa)]

Z[aj]:ffdﬂl(Ml)dMZ(Mz)

><de(exp(N)\z;iaj)]
AlN,i]A[]

dent, this can be rewritten as the additivity of the function
Therefore,
Aa)—wa(a)
19
N g'n Z[aj]=[N1(a)) —wa(@)) ]+ [N2(a)) —wal(q))].
|

1
NCOEES (212

o ) ) Combining Egs(2.11) and(2.12, we find that the rela-
This is the essence of Voiculescu’s formula for adding ran+jgn

dom matrices.
Let us see how this works more explicitly, by considering
two independent random matriclel; andM, with measures

du1(M,) andduy(M;). We shall assume both measures tojs yalid on the support of the density pf(a), and by ana-
be U(N)-invariant, even though, as explained in the Introduc-jytic continuation is therefore valid on the whole complex
tion, it is not more difficult to prove the formula with only pjane,
one U(N)-invariant measure and a noninvariant one. Both  Fora=0, the functions\ (a),\;(a),\,(a) are functional
measures are such that there exists a saddle point for the,erses of the corresponding resolvents, anda)=1/a
eigenvalues oM; andM,. - _ _ so that Eq(2.13 reduces to Voiculescu’s formula for adding
Then one introduces the partition function with an exter-free variables. However, the relatid@.13 still holds for
nal field: arbitrary A, thus generalizing Voiculescu’s formula in a
highly nontrivial way.

or for the particular casA&=0:

A(a)+Ay(a)=A(a)+wala) (2.13

Z(A)=f f dup1(Mp)dus(Mo)exp(N tr(My+Mj)A).
(2.9 Remarks

(i) If we assume that only one measlieeg.,du(M)] is
U(N)-invariant, thenZ(A) no longer depends only on the ei-
genvalues of\; but we can take Eq2.10 as a definition of
Z[a;], and then the rest of the proof works identicaléx-

cept that instead of diagonalizing,, one integrates over
Z[aj]zf dQ Z(QAQT), (210 Q).
QeUN) (i) In theA=0 case, the connection to the usual diagram-
Where we use the norma“zed Haar measureLmN)_ By matic interpretation is the fOllOWing. One can show that for
performing explicitly the integration ovel2 (once more, the A=0, our definition off(a)=A(a)—1/a is equivalent to

ltzykson—Zuber—Harish Chandra integraive immediately ~ f(a)=(1/N)(d/da)In(exp(NaM;,)), whereM, is an arbi-
obtain that trarily chosen diagonal elemerexp(NaM,,)) being a gen-

erating function of the moments ®f,,, its logarithm gen-
erates the connected moments: (exp(NaMiy))
=37_o(N/nhya(M],).. Furthermore, usingJ(N) invari-
ance of the measure and bgtlanarity andconnectednessf
where thex; are the eigenvalues dfl,+M,. We can now the diagrams _that appear in t_he perturbative expansion, one
introduce the usual logarithmic derivative with respect toas the following larg&N equality:
a; ,which is of the form

Again, due toU(N) invariance of both measureg(A) de-
pends only on the eigenvalues of A. Therefore we can
write that

de(quN)\iaj)]

21a]= | [ dustnduamy = ZE S
[ j

Lo NE(n=1)!
19 o defexpNa;)] Mive ~ —
Ng'ﬂZ[aj]ZN gm—A[a]

] ] ] A

=\ (a)) —wa(d)), (211

(trM™M)..

Therefore one finds the usual
=37_,a(IN){trM"*+1y .

expansiori(a)
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IIl. MULTIPLYING RANDOM MATRICES

The same type of argument applies to the multiplication
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h(\), which is the crucial difference from the preceding sec-
tion. Indeed, let us now choost to be the trivial represen-
tation, so thah;=N—1i, that is,

of random matrices. Let us start again with a single Her-

mitean random matrix with a measutg(M) which leads to

a saddle point on the eigenvalues. We define the partition

function with a character

1

Z[H]=mf du(M)xu(M). (3.1
Here H is a (holomorphig irreducible representation of
GL(N); it can be parametrized in the following way
={h;; j=1,... N}, where theh;, j=1,... N, which
form a decreasing sequence of integers, aresttited high-
est weightsof H (the shifted highest weightk; are con-
nected with the usual highest weightg by the formulah;
=N—j+m;). xu(M) is the character off taken atM. Us-
ing Weyl's formula for the characteyy(M)and the fact that
dimH=cstA[h;], we can rewriteZ[H] in terms of theh; :

defA]]

S E— (3.2
A[NJALh]

Z[h,-]=f du(M)

This expression is very similar to E@.3) obtained after use

of the ltzykson—Zuber—Harish Chandra formula. It is now

clear that the same formalism will app{gee appendix 2 of
Refs.[9] and[10] for more details

In the largeN limit, we assume that thl; /N (note the
important rescaling of a factor dfl) tend to a continuous
densitypy(h). We can then consider tirg /N as continuous
real variables, and introduce the logarithmic derivatives

p < J deD\ihj]>
—InZ[h;]={ —In
ah; ohy Alhy] [,

(9/dh; stands for (IN)[d/d(hj/N)]).

(3.3

h
a)H(h)=|nm.

Then de[txri]=A[xi] and thereforda(A) =Awy(N): A(h)is
now the functional inverse of times the resolvent, and not
of the resolvent itself, which is something completely differ-
ent.

Let us now write down a formula for multiplying two
matricesM; and M,, with associated measureg.,(M,)
anddu,(M,). As before, at least one of the two measures
must beU(N)-invariant. We introduce the partition function
with a character

(M;M3)
—H .

Z(H)= f f dpn(My)dpun(M) 2 (3.4

Direct application of the previous formalism to the product
MM, leads to

J
aTInZ[hj]zln)\(hj/N)—wH(hj/N), (3.5
j
where\(h) is associated to the produkt;M,.
On the other hand, since one of the two measuregh§-

invariant, we can write that

1
Zh 1= dimHJneum)

“dO f f da(M1)dao(My) xu( QM0 M),

We are now led to the introduction of two functions: the Using orthogonality relations for matrix elements of irreduc-

resolventw(h),

dh’py(h’

and the functiori.(h) which has the same cut as,(h) and
whose mean value on it is

L(h;/N)= Eln defn’]) .
J H

We finally definex (h) =expL(h).

The eigenvalues also have a saddle point dengjf\ ),
with its associated resolveaty,(\), and there is a function
h(\) which satisfies

1/ 4 N
W\ = N )\ixln def\;’]
i H

and which has the same cutiasy(\). h(\) and\(h) are of

course functional inverses of each other. Note that we werahich is

forced to introduce an extra factor afin the definition of

ible representations, we can integrate o&er

xu(My) XH(Mz)

Z[hj]= ffdﬂl(Ml)dMZ(Mz) dimH dimH

The logarithmic derivative can now be written as

J
—InZ[h;]=[In\1(hj/N) = @y(h;/N)]
ah;

+[InAo(h;/N)—wy(h;/N)],  (3.6)
where\(h) and\,(h) are the functions associated in the
usual way to the matricelél; and M.
Comparing Egs(3.5 and (3.6) and exponentiating the
resulting formula, as is more appropriate for multiplying ma-
trices, we find

A1(h)Ao(h)=A(h)explwy(h)),

the
N(h)exp(— wy(h)).

(3.7)

multiplicativity of the function
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If we now restrict ourselves to the case of the trivial rep-formula for the orthogonality formula for characters. This is
resentation)\ (h),A;1(h),\,(h) are functional inverses aof ~ completely consistent with the assertion found in the math-
times the corresponding resolvents, amgi(h)=In(h/(h  ematical literaturd15,16 that the two matrices should be
—1)), so that independentlyJ(N)-rotated with respect to each other in or-
der to ensure freeness. As has already been mentioned, this
hypothesis is obviously necessd@as the case of two fixed
matrices shows but let us also note that when one keeps the
external fieldA nonzero(or the representatioH nontrivial),

Note once more that the functionga) in Eq. (2.13 and  then one obtains addition/multiplication formulas which are
the functions\(h) in Eq. (3.7) are not directly related to each (different from Voiculescu’s formulagand, generically, in-
other since they are expressed in terms of different variablegompatible with ther so that for these measurpshich of

course also breald(N) invariancd, the random matrices are
IV. CONCLUSION no longer free variables, but still satisfy addition/
multiplication formulas.

h
Mo =N ()= . 39

We have proven two main formulas: E.13 for the -
. : ; . Th I f th I f h
addition of random matrices, and E@®.7) for their multipli- e analyticity property of the resolvents stems from the

. fact that we have assumed the matrices to be Hermitean,
cation. As far as the author knows, the second formula, eve,

. . . {¥nich prevents the eigenvalues from moving freely in the
lr::;[?cusfoac:fforn{Eq.(S.S)], does not have a simple diagram- complex plane, and creating dense regions where the resol-

vent is no longer analytic. However, the proof does not reall
The proofs used above have the advantage that th 9 y b y

- . Fhake use of the Hermiticity of the matrices, and the gener-
clearly highlight the key hypothesis needed for the results 'Qjization to non-Hermitean matrices might provide some use-

hold: (i) U(.N) Invariance _of(at least one ofthe two mea- ful insight into these more complicated matrix models.
sures, andii) an analyticity property of the resolvents. Let

us discuss these two points.

The U(N) invariance of the measure is an essential ingre-
dient of the proof: without it one cannot integrate over the This work was supported in part by U.S. DOE Grant No.
unitary group to use the ltzykson—Zuber—Harish ChandrdDE-FG02-96ER40559.
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